Abstract

This account describes the construction of supramolecular constructs based on our bis(porphyrin) cleft molecule. The bis(porphyrin) cleft molecule was originally synthesized as a tweezer-shaped host molecule for planar guest molecules. A detailed study on the bis(porphyrin) cleft molecule revealed that the bis(porphyrin) cleft molecule forms two kinds of supramolecular structures. One structure is a self-complementary dimer obtained through intermolecular hydrogen bonding, and the other structure is a host-guest complex, in which the electron-rich cleft cavity accommodates electron-deficient guests through donor-acceptor interactions. Through the two supramolecular structures, two distinct supramolecular polymers can be formed through self-complementary dimerization or donor-acceptor host-guest complexation. The supramolecular chain structures were modified by judiciously using two distinct supramolecular structures. In the main text, several results, including the binding capability of our bis(porphyrin) cleft molecule, the formation of supramolecular porphyrin complexes, and the supramolecular polymerization behaviors of the bis(porphyrin) cleft molecule, are reported. In conclusion, the future direction of the bis(porphyrin) cleft molecule is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.