Abstract

Selaginella willdenowii, a commonly used greenhouse fern, was often used as a biowaste to synthesize zinc oxide nanoparticles (ZnO NPs) in an eco-friendly and cost-effective way. UV–Visible spectra studies were carried out to confirm the synthesis of S. willdenowii-mediated ZnO NPs (SW-ZnO NPs), and a peak at 367[Formula: see text]nm with a sharp band gap of 3.415[Formula: see text]eV was observed. The X-ray diffraction analysis indicated that the crystalline size of the synthesized SW-ZnO NPs was 11.971[Formula: see text]nm. The phytochemicals present in the extracts and the compounds involved in the reduction of metal to nanoparticles were determined by Fourier Transform Infrared analysis. Scanning electron microscopy was utilized to analyze the surface morphology and size of the obtained SW-ZnO NPs. The examination revealed that they exhibited a hexagonal shape, with an average size falling within the range of 17–23[Formula: see text]nm. Under ultra-violet light, reactive blue 220 and reactive yellow 145 dyes showed 78.06% and 60.14% degradation, showing potential photocatalytic degradation activity. The synthesized SW-ZnO NPs also exhibited antimicrobial activity against bacterial strains (Escherichia coli and Bacillus subtilis) and fungal cultures (Candida tropicalis and Candida albicans) showed cytotoxic activity against Hep-G2 cell lines. Our results suggest the green synthesized SW-ZnO NPs have potential photocatalytic, antimicrobial and cytotoxic potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call