Abstract
The AlxCoCrFeNi2.1 (x = 0, 0.3, 0.7, 1.0, 1.3) multi-component high-entropy alloy (HEA) was synthesized by mechanical alloying (MA) and Spark Plasma Sintering (SPS), The impact of the percentage of Al on crystal structure transition, microstructure evolution and mechanical properties were studied. Crystal structure was investigated by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The results show that with the increasing of Al content, the crystal structure of the alloys gradually transformed from a nanocrystalline phase of FCC to a mix of FCC and BCC nanocrystalline. The hardness was found to increase steadily from 433 HV to 565 HV due to the increase in fraction of BCC nanocrystalline phase. Thus, the compressive fracture strength increased from 1702 MPa to 2333 MPa; in contrast, the fracture strain decreased from 39.8% to 15.6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.