Abstract

Abstract Multi-component high entropy alloys (HEAs) are observed to form simple solid solutions in contrary to general perception that complex compounds may form in such multi-component equi-atomic alloys. In the present study, alloying behavior was investigated using XRD in AlCoCrCuFe and NiCoCrCuFe equi-atomic high entropy alloys synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). Simple FCC and BCC phases evolved after MA, while Cu-rich FCC and sigma (σ) phases evolved along with FCC and BCC phases after SPS. Further, NiCoCuFe, NiCoCrFe and NiCoFe equi-atomic alloys were investigated to confirm the formation of Cu-rich FCC, and σ phases. The hardness was observed to be 770 ± 10 HV for AlCoCrCuFe and 400 ± 10 HV for NiCoCrCuFe. Phase evolution after MA and SPS indicate that configurational entropy is not sufficient enough to suppress the formation of Cu-rich FCC, and σ phases, and enthalpy of mixing appears to play an important role in determining the phase formation in high entropy alloys after sintering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.