Abstract
The submerged arc welding (SAW) process is operated at high temperatures, up to 2500 °C, in the arc cavity formed by molten oxy-fluoride flux (slag). These high arc cavity temperatures and the complex interaction of gas–slag–metal reactions in a small space below the arc render the study of specific chemical interactions difficult. The importance of gas phase reactions in the arc cavity of the SAW process is well established. A low-temperature (1350 °C) experimental method was applied to simulate and study the vaporisation and re-condensation behaviour of the gas species emanating from oxy-fluoride flux. Energy dispersive X-ray spectroscopy (EDX) analyses and reaction thermochemistry calculations were combined to explain the role of Al as a de-oxidiser element in gas phase chemistry and, consequently, in nano-strand formation reactions. EDX element maps showed that the nano-strands contain elemental Ti only, and the nano-strand end-caps contain Co-Mn-Fe fluoride. This indicates a sequence of condensation reactions, as Ti in the gas phase is re-condensed first to form the nano-strands and the end-caps formed from subsequent re-condensation of Co-Mn-Fe fluorides. The nano-strand diameters are approximately 120 nm to 360 nm. The end-cap diameter typically matches the nano-strand diameter. Thermochemical calculations in terms of simple reactions confirm the likely formation of the nanofeatures from the gas phase species due to the Al displacement of metals from their metal fluoride gas species according to the reaction: yAl + xMFy ↔ xM + yAlFx. The gas–slag–metal equilibrium model shows that TiO2 in the flux is transformed into TiF3 gas. Formation of Ti nano-strands is possible via displacement of Ti from TiF3 by Al to form Al-fluoride gas.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have