Abstract

We propose and analyze a new kind of nano scale computational architectures using spin waves as a physical mechanism for device interconnection. Information is encoded into the phase of spin waves propagating in a ferromagnetic film — a Spin Wave Bus. We describe several possible logic devices utilizing spin waves. The performance of the proposed devices is illustrated by numerical modeling based on the experimental data for spin wave excitation and propagation in NiFe film. The key advantage of the proposed architectures is that information transmission is accomplished without charge transfer. Potentially, the architectures with Spin Wave Bus may be beneficial in terms of power consumption and resolve the interconnect problem. Another expected benefit is in the enhanced logic functionality. Using phase logic, it is possible to realize a number of logic functions in one device. These advantages make the architectures with a Spin Wave Bus very promising for application in ultra-high-density integrated circuits (more than 10 10 devices per square inch).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call