Abstract

We demonstrate what we believe is the first nonmechanical tunable vertical-cavity surface-emitting laser operating in the C band. This was achieved as a result of the combination of an InGaAs quantum well structure with a 6lambda thickness tunable index nano-polymer-dispersed liquid-crystal material. Experimental results exhibited a potential tunable range close to 10 nm, in the preliminary version, and excellent single mode locking due to the side-mode suppression ratio (more than 20 dB) over the whole spectral range. Another decisive advantage, compared to mechanical solutions, was the tuning response time of a few tens of microseconds (>30 micros) to scan the full spectral range (10 nm), making this device appropriate for some access network functions, as well as being robust and low cost. The voltage values are the main limitation to wavelength range extension. We present a first version of the device optically pumped. The next version will be electrically pumped as required for the access network applications targeted here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.