Abstract

With the rapid development of information technology, a wavelength-tunable vertical cavity surface emitting laser (VCSEL) is urgently needed as an optical signal source in dense wavelength division multiplexing (DWDM). Liquid crystal tunable VCSEL realized by utilizing the birefringence characteristics of liquid crystal has the advantages of stable polarization, high reliability, continuous wavelength tuning. In this paper, a liquid crystal tunable VCSEL structure based on intracavity sub wavelength grating is designed, and the influence of liquid crystal layer and sub wavelength grating on the wavelength tuning characteristics of VCSEL are analyzed and studied in depth. The results show that the thickness of the liquid crystal layer in the tunable VCSEL structure not only affects the wavelength tuning range, but also determines the mode hopping in the tuning process. In addition, an effective refractive index antireflection layer is formed by designing the subwavelength grating structure, and the refractive index difference between the liquid crystal layer and the semiconductor layer is optimized to further improve the wavelength tuning range and tuning efficiency. When the center wavelength is 980 nm, the tuning range is increased by 42%, reaching 41 nm, and the wavelength tuning efficiency is increased by 41%. It provides a new method of designing the VCSEL laser with high beam quality and continuous wavelength tuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call