Abstract

The synthesis of two-dimensional van der Waals magnets has paved the way for both technological applications and fundamental research on magnetism confined to ultra-small length scales. Edge magnetic moments in ferromagnets are expected to be less magnetized than in the sample interior because of the reduced amount of neighboring ferromagnetic spins at the sample edge. We recently demonstrated that CrGeTe3 (CGT) flakes thinner than 10 nm are hard ferromagnets; i.e., they exhibit an open hysteresis loop. In contrast, thicker flakes exhibit zero net remnant field in the interior, with hard ferromagnetism present only at the cleaved edges. This experimental observation suggests that a nontrivial interaction exists between the sample edge and the interior. Here, we demonstrate that artificial edges fabricated by focus ion beam etching also display hard ferromagnetism. This enables us to write magnetic nanowires in CGT directly and use this method to characterize the magnetic interaction between the interior and edge. The results indicate that the interior saturation and depolarization fields depend on the lateral dimensions of the sample. Most notably, the interior region between the edges of a sample narrower than 300 nm becomes a hard ferromagnet, suggesting an enhancement of the magnetic exchange induced by the proximity of the edges. Last, we find that the CGT regions amorphized by the gallium beam are nonmagnetic, which introduces a novel method to tune the local magnetic properties of CGT films, potentially enabling integration into spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.