Abstract

We demonstrate experimentally that a nano-gap could be constructed by using a scanning probe microscope to allow a gold tip to approach a gold nanorod immobilized on a glass coverslip. The nano-gap can enhance Raman scattering of graphene sandwiched between the tip and the nanorod. The Raman intensity was strongly dependent on the incident light polarization. Here, linear, radial, azimuthal, and intermediate states between radial and azimuthal polarization were investigated and compared in detail. The maximum surface-enhanced Raman scattering effect of the nano-gap occurred for the intermediate states between the radial and azimuthal polarized light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.