Abstract

Orally dispersing tablets (ODTs), also known as orodispersibles, were first introduced into the market in 1980s to overcome dysphagia problems amongst pediatrics and geriatrics. Despite their abilities to avoid swallowing difficulties, frequency of dosing stood as a barrier for these formulations. The aim of the current study is to produce and optimize a sustained release orally disintegrating tablets (SR-ODT), with the aid of chitosan. A design of experiment (DoE) was first performed using Minitab to determine the effect of five independent variables on three dependent responses when producing the nanoparticles using ionotopic gelation. The variables studied were (tripolyphosphate concentration TPP, chitosan concentration CS, acetic acid concentration, chitosan: tripolyphosphate ratios and stirring time) and the responses were (particle size, surface charge and encapsulation efficiency). A formulation with optimum particle size, surface charge and encapsulation efficiency was prepared and further coated with polyvinylpyrolidine (PVP), polyethylene glycol (PEG) and polyethylene co-acrylic acid (PEAA). Minitab studies revealed that the nanoparticles’ particle size was affected by most of the independent variables except stirring time and the ratios of CS to TPP. The optimized nanoparticles showed particle size of 153.8±14nm, surface charge of 31.4±0.9mV and encapsulation efficiency of 99.7±0.06%. The DSC showed that PMZ was solubilized within chitosan nanoparticle, whereas SEM images indicated that all the samples were spherical in shape with smooth surface and had similar size to that measured by DLS. After coating and dispersing into the tablets’ matrices, the tablets were evaluated to determine their friability, disintegration time and tensile strength. All tablets were at an appropriate friability (less than 1%) and had tensile strength above 2.5N/mm2. Besides, all the tablets managed to disintegrate within 40s whilst sustaining the drug release over 24h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.