Abstract

A nematic liquid crystal (LC) is doped with dilute concentrations of pristine monolayer graphene (GP) flakes, and the LC + GP hybrids are found to exhibit a dramatic increase in the dielectric anisotropy. Electric field-dependent conductance studies reveal that the graphene flakes follow the nematic director that mechanically rotates on increasing an applied electric field. Further studies show that the π–π electron stacking, between the graphene's honeycomb structure and the LC's benzene rings, stabilizes pseudo-nematic domains that collectively amplify the dielectric anisotropy by improving the orientational order parameter in the nematic phase. These anisotropic domains interact with the external electric field, resulting in a nonzero dielectric anisotropy in the isotropic phase as well. The enhancement in dielectric anisotropy, due to the LC–graphene coupling, is found to have subsequent positive impacts on the LC's orientational threshold field and elasticity that allows the nematic director to respond quicker on switching the electric field off.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.