Abstract
Nano-tack (measured using AFM) and bulk-tack adhesive forces of blends of C60 and either polystyrene-block-polybutadiene-block-polystyrene (SBS) or polystyrene-block-polyisoprene-block-polystyrene (SIS) triblock copolymer pressure sensitive adhesives were measured after exposure to white light irradiation. The nano-tack adhesive forces in C60–SIS/SBS were found to decrease with increasing C60 concentration and exposure time, approaching the value for 100% polystyrene, providing an indication that significant surface hardening and crosslinking of the soft isoprene and butadiene phases occurs in the presence of C60. Films produced during the study were smooth, having low RMS surface roughness, and showed nanoscale phase separation between the soft (diene) and hard (styrene) segments. This phase separation disappeared after addition of C60 sensitizer and white light irradiation. Bulk adhesive measurements (tack and peel strength) showed a similar trend with C60 concentration and exposure time, and in irradiated systems containing as little as 0.2wt% C60, a significant decrease in adhesion was observed. Estimated Tg (measured using DMA, shear mode) of the soft-block shifts to higher temperatures (increasing by 30–40°C), and high gel fractions were obtained, indicating the presence of chemically crosslinked networks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.