Abstract
The NER has been important in different applications like data Retrieval and Extraction, Text Summarization, Machine Translation, Question Answering (Q-A), etc. While several investigations have been carried out for NER in English, a high-accuracy tool still must be designed per the Literature Survey. This paper suggests an English Named Entities Recognition methodology using NLP algorithms called Bi-Directional Long short-term memory-based recurrent neural network (LSTM-RNN). Most English Language NER systems use detailed features and handcrafted algorithms with gazetteers. The proposed model is language-independent and has no domain-specific features or handcrafted algorithms. Also, it depends on semantic knowledge from word vectors realized by an unsupervised learning algorithm on an unannotated corpus. It achieved state-of-the-art performance in English without the use of any morphological research or without using gazetteers of any sort. A little database group of 200 sentences includes 3080 words. The features selection and generations are presented to catch the Name Entity. The proposed work is desired to forecast the Name Entity of the focus words in a sentence with high accuracy with the benefit of practical knowledge acquisition techniques.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have