Abstract
Trichophyton rubrum and Candida species comprise the majority of onychomycosis pathogens. The aim of this study was to evaluate Raman spectroscopy for the differentiation between healthy and either T. rubrum or Candida infected nails. Raman measurements were performed on clippings (N = 52) infected either by T. rubrum (N = 12) or Candida species (N = 14; C. parapsilosis (sensu lato): N = 11, C. glabrata: N = 1, C. albicans: N = 2) with healthy nails (N = 26) used as controls. Systematic spectral differences were observed in the 500-520 cm-1 band region, attributable to a diverting imprint of the disulfide stretching of cystine and cysteine residues among samples. Particularly, Candida infected nails demonstrated a shoulder at 519 cm-1, corresponding to the signal of the less stable gauche-gauche-trans conformation of the disulfide bond. Two additional bands at 619 and 648 cm-1, corresponding to the C-S stretching vibration, were more evident in the T. rubrum infected nails. Finally, a Raman band at 1550 cm-1, attributable to amide II and tryptophan (Trp) content, was undetectable in Candida infected nails. Using principal component analysis (PCA), efficient differentiation of healthy, T. rubrum and Candida species infected nails was achieved. Soft independent modeling of class analogy (SIMCA) and partial least squares-discriminant analysis (PLS-DA) were further applied to generate diagnostic algorithms for the classification of Raman spectra. Both techniques succeeded in modeling clinical nail samples in three groups according to their mycological categories. Raman spectroscopy is a promising method for the differentiation of healthy vs. diseased nails, including efficient differentiation between onychomycosis caused by T. rubrum and Candida species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.