Abstract

Nitric oxide (NO) and calcium-binding proteins (CaBP) are important neuromodulators implicated in brain plasticity and brain disease. In addition, the mammalian superior colliculus (SC) has one of the highest concentrations of NO within the brain. The present study was designed to determine the distribution of nitric oxide-synthesizing neurons in the SC of the rabbit by enzyme histochemistry for reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), and its degree of co-localization with CaBP, parvalbumin (PV) and calbindin (CB). NADPH-d-labelled fibres formed dense patches of terminal buttons within the intermediate grey layer and streams of fibres within the deepest layers of SC. Cells expressing NOS constitute a subpopulation of neurons in which practically all cell types are represented. Combined PV/NADPH-d experiments showed a complete lack of co-localization within individual neurons and fibres. On the contrary, double-labelled neurons appeared in CB/NADPH-d-stained sections, only in the superficial layers, and mostly in the SGS and SO. These cells, which were intermingled with other neurons containing either NADPH-d or CB, appear to be a subtype of narrow-field and wide-field vertical cells, and display an anterior-posterior gradient of density. Owing to the involvement of the superficial layers of the SC in the organization and integration of the visual information, it is suggested that these neurons may play a concrete role within the visual circuits. Our data indicate a clear selectivity in the expression of NADPH-d, PV and CB in the SC, and that NO and CB probably serve as co-modulators and/or co-transmitters in the connectivity of the superficial layers of this midbrain structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.