Abstract
During synaptogenesis, macromolecular protein complexes assemble at the pre- and postsynaptic membrane. Extensive literature identifies numerous transmembrane molecules sufficient to induce synapse formation and several intracellular scaffolding molecules responsible for assembling active zones and recruiting synaptic vesicles. However, little is known about the molecular mechanisms coupling membrane receptors to active zone molecules during development. Using C.elegans, we identify an F-actin network present at nascent presynaptic terminals required for presynaptic assembly. We unravel a sequence of events where specificity-determining adhesion molecules define the location of developing synapses and locally assemble F-actin. Next, an adaptor protein NAB-1/Neurabin binds to F-actin and recruits active zone proteins, SYD-1 and SYD-2/Liprin-α by forming a tripartite complex. NAB-1 localizes transiently to synapses during development and is required for presynaptic assembly. Together, we identify a role for the actin cytoskeleton during presynaptic development and characterize a molecular pathway where NAB-1 links synaptic partner recognition to active zone assembly.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.