Abstract

Active zones are specialized presynaptic structures critical for neurotransmission. We show that a neuronal maintenance factor, nicotinamide mononucleotide adenylyltransferase (NMNAT), is required for maintaining active zone structural integrity in Drosophila by interacting with the active zone protein, Bruchpilot (BRP), and shielding it from activity-induced ubiquitin-proteasome-mediated degradation. NMNAT localizes to the peri-active zone and interacts biochemically with BRP in an activity-dependent manner. Loss of NMNAT results in ubiquitination, mislocalization and aggregation of BRP, and subsequent active zone degeneration. We propose that, as a neuronal maintenance factor, NMNAT specifically maintains active zone structure by direct protein-protein interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call