Abstract

Ca2+ signaling is a key and ubiquitous actor of cell organization and its modulation controls many cellular responses. SERCAs (sarco-endoplasmic reticulum Ca2+-ATPases) pump Ca2+ into internal stores that play a major role in the cytosolic Ca2+ concentration rise upon cell activation. Platelets exhibit 2 types of SERCAs, SERCA2b and SERCA3 (SERCA3 deficient mice), which may exert specific roles, yet ill-defined. We have recently shown that Ca2+ mobilization from SERCA3-dependent stores was required for full platelet activation in weak stimulation conditions. To uncover the signaling mechanisms associated with Ca2+ mobilization from SERCA3-dependent stores leading to ADP secretion. Using platelets from wild-type or Serca3-deficient mice, we demonstrated that an early (within 5-10 s following stimulation) secretion of ADP specifically dependent on SERCA3 stored Ca2+ is exclusively mobilized by nicotinic acid adenosine dinucleotide-phosphate (NAADP): both Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion are blocked by the NAADP receptor antagonist Ned-19, and reciprocally both are stimulated by permeant NAADP. In contrast, Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion were unaffected by inhibition of the production of IP3 (inositol-1,4,5-trisphosphate) by phospholipase-C and accordingly were not stimulated by permeant IP3. Upon activation, an NAADP/SERCA3 Ca2+ mobilization pathway initiates an early ADP secretion, potentiating platelet activation, and a secondary wave of ADP secretion driven by both an IP3/SERCA2b-dependent Ca2+ stores pathway and the NAADP/SERCA3 pathway. This does not exclude that Ca2+ mobilized from SERCA3 stores may also enhance platelet global reactivity to agonists. Because of its modulating effect on platelet activation, this NAADP-SERCA3 pathway may be a relevant target for anti-thrombotic therapy. Graphic Abstract: A graphic abstract is available for this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.