Abstract
The integration of the flexibility of organic polymer electrolyte and high ionic conductivity of the ceramic electrolyte is attempted in search of efficient and safer battery. Composite solid polymer electrolyte (CSPE) provides high ionic conductivity with a sustainable thin film of electrolyte having the synergistic effect of ionic liquid and active inorganic filler. The CSPE is synthesized by the solution cast technique using Na3Zr2Si2PO12 (NZSP) as ceramic and poly(vinylidene fluoride-hexafluoropropylene) with Salt-Ionic liquid as polymer electrolyte. X-ray diffraction (XRD) of CSPE includes amorphous nature due to the polymer part as well as crystalline peaks of ceramic NZSP, simultaneously. The prepared CSPE sample shows homogeneous and interconnected surface morphology is observed by Scanning electron microscopy (SEM) image. Thermogravimetric analysis (TGA) shows electrolyte is thermally stable up to 200 °C and differential scanning calorimetry (DSC) reveals decrease in degree of crystallinity due to NZSP addition in the CSPE. By complex impedance spectroscopy (CIS), room temperature ionic conductivity of the prepared CSPE is found ~1.03 mS/cm. The dielectric behaviour of the prepared electrolyte is also studied to investigate the ion dynamics within the sample. The cationic transference number is 0.53 and the electrochemical stability window (ESW) of the CSPE is 4.9 V which is suitable for sodium solid-state batteries applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.