Abstract

Rapid kinetic techniques were used to study the transport and salvage of uridine and other nucleosides in mouse spleen cells. Spleen cells express two nucleoside transport systems: (1) the non-concentrative, symmetrical, Na+-independent transporter with broad substrate specificity, which has been found in all mammalian cells and is sensitive to inhibition by dipyridamole and nitrobenzylthioinosine; and (2) a Na+-dependent nucleoside transport, which is specific for uridine and purine nucleosides and resistant to inhibition by dipyridamole and nitrobenzylthioinosine. The kinetic properties of the two transporters were determined by measuring uridine influx in ATP-depleted cells and dipyridamole-treated cells, respectively. The Michaelis-Menten constants for Na+-independent and -dependent transport were about 40 and 200 μM, respectively, but the first-order rate constants were about the same for both transport systems. Nitrobenzylthioinosine-sensitivity of the facilitated nucleoside transporter correlated with the presence of about 10 000 high-affinity (Kd=0.6 nM) nitrobenzylthioinosine-binding sites per cell. The turnover number of the nitrobenzylthioinosine-sensitive nucleoside transporter was comparable to that of mouse P388 leukemia cells. The activation energy of this transporter was 20 kcal/mol. Entry of uridine via either of the transport routes was rapidly followed by its phosphorylation and conversion to UTP. The Michaelis-Menten constant for the in situ phosphorylation of uridine was about 50 μM and the first-order rate constants for phosphorylation and transport were about the same. The spleen cells also efficiently salvaged adenosine, adenine, and hypoxanthine, but not thymidine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.