Abstract
IntroductionHyperglycemia-induced endothelial cell injury is one of the main causes of diabetic vasculopathy. Fat mass and obesity-associated protein (FTO) was the first RNA N6-methyladenosine (m6A) demethylase identified; it participates in the pathogenesis of diabetes. However, the role of FTO in hyperglycemia-induced vascular endothelial cell injury remains unclear. Materials and methodsThe effects of FTO on cellular m6A, autophagy, oxidative stress, proliferation, and cytotoxicity were explored in human umbilical vein endothelial cells (HUVECs) treated with high glucose (33.3 mmol/mL) after overexpression or pharmacological inhibition of FTO. MeRIP-qPCR and RNA stability assays were used to explore the molecular mechanisms by which FTO regulates autophagy. ResultsHigh glucose treatment increased m6A levels and reduced FTO protein expression in HUVECs. Wild-type overexpression of FTO markedly inhibited reactive oxygen species generation by promoting autophagy, increasing endothelial cell proliferation, and decreasing the cytotoxicity of high glucose concentrations. The pharmacological inhibition of FTO showed the opposite results. Mechanistically, we identified Unc-51-like kinase 1 (ULK1), a gene responsible for autophagosome formation, as a downstream target of FTO-mediated m6A modification. FTO overexpression demethylated ULK1 mRNA and inhibited its degradation in an m6A-YTHDF2-dependent manner, leading to autophagy activation. ConclusionsOur study demonstrates the functional importance of FTO-mediated m6A modification in alleviating endothelial cell injury under high glucose conditions and indicates that FTO may be a novel therapeutic target for diabetic vascular complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.