Abstract

Endothelial dysfunction is associated with the initiation of sepsis-associated organ failure. Bacterial quorum-sensing molecules act as pathogen-associated molecular patterns; however, the effects of quorum-sensing molecules on endothelial cells remain less understood. This study investigated the molecular mechanisms of quorum-sensing molecule-induced cell death and their interaction with lipopolysaccharide (LPS) in human umbilical vein endothelial cells. Endothelial cells were treated with N-3-oxododecanoyl homoserine lactone (3OC12-HSL) and LPS derived from Pseudomonas aeruginosa. Treatment with 3OC12-HSL reduced cell viability in a dose-dependent manner, and cotreatment with 3OC12-HSL and LPS enhanced cell death. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay revealed an increase in apoptotic cell death following 3OC12-HSL treatment; furthermore, cotreatment with 3OC12-HSL and LPS enhanced apoptosis. Western blotting revealed that treatment with 3OC12-HSL activated the receptor-interacting protein kinase 1 (RIPK1) pathway, leading to an increase in the levels of cleaved caspase 8 and 3. In addition, we found that treatment with necrostatin-1, an RIPK1 inhibitor, reduced cell death and ameliorated the activation of the RIPK1-dependent apoptotic pathway in 3OC12-HSL-treated cells. In conclusion, 3OC12-HSL induced endothelial cell apoptosis via the activation of the RIPK1 pathway, independent of LPS toxicity. Inhibition of RIPK1 may act as a therapeutic option for preserving endothelial cell integrity in patients with sepsis by disrupting the mechanism by which quorum-sensing molecules mediate their toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call