Abstract
The effect of inorganic carbon (IC) on nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB) was investigated over a concentration range of 0–12 mmol C/L, encompassing typical IC levels in a wastewater treatment reactors. The AOB culture was enriched along with nitrite-oxidizing bacteria (NOB) in a sequencing batch reactor (SBR) to perform complete nitrification. Batch experiments were conducted with continuous carbon dioxide (CO2) stripping or at controlled IC concentrations. The results revealed a linear relationship between N2O production rate (N2OR) and IC concentration (R2 = 0.97) within the IC range studied, suggesting a substantial effect of IC on N2O production by AOB. Similar results were also obtained with an AOB culture treating anaerobic sludge digestion liquor. The fundamental mechanism responsible for this dependency is unclear; however, in agreement with previous studies, it was observed that the ammonia oxidation rate (AOR) was also influenced by the IC concentration, which could be well described by the Monod kinetics. These resulted in an exponential relationship between N2OR and AOR, as previously observed in experiments where AOR was altered by varying dissolved oxygen and ammonia concentrations. It is therefore possible that IC indirectly affected N2OR by causing a change in AOR. The observation in this study indicates that alkalinity (mostly contributed by IC) could be a significant factor influencing N2O production and should be taken into consideration in estimating and mitigating N2O emissions in wastewater treatment systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.