Abstract

Fixation and functionalisation of N2 by main-group elements has remained scarce. Herein, we report a fixation and cleavage of the N ≡ N triple bond achieved in a dinitrogen (N2) matrix by the reaction of hydrogen and laser-ablated silicon atoms. The four-membered heterocycle H2Si(μ-N)2SiH2, the H2SiNN(H2) and HNSiNH complexes are characterized by infrared spectroscopy in conjunction with quantum-chemical calculations. The synergistic interaction of the two SiH2 moieties with N2 results in the formation of final product H2Si(μ-N)2SiH2, and theoretical calculations reveal the donation of electron density of Si to π* antibonding orbitals and the removal of electron density from the π bonding orbitals of N2, leading to cleave the non-polar and strong NN triple bond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call