Abstract
Abstract Here, we report the enhanced photoelectrochemical performance of surface modified hematite thin films with n-type copper oxide nanostructures (Cu2O/Fe2O3) obtained through simple electrochemical deposition method. The thickness and amount of cuprous oxide layer were varied by simply changing the number of electrodeposition cycles (viz. 5, 10, 25, 50 and 100) in order to understand its thermodynamic and kinetic influence on the photoelectrochemical activity of the resultant nano-heterostructures. Structural and morphological characteristics of the obtained Cu2O/Fe2O3 films have been studied by absorption spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Electrochemical investigations such as linear sweep voltammetry, Mott–Schottky analysis, and electrochemical impedance spectroscopy suggested the formation of n-type Cu2O layers over the hematite films with varying charge-carrier densities, ranging from 0.56×1019 to 3.94×1019 cm−3, that varies with the number of cycles of electrochemical deposition. Besides, the thickness of deposited cuprous oxide layer is noted to alter the net electrochemical and photo-electrochemical response of the base material. An interesting, peak event was recorded for a particular thickness of the cuprous oxide layer (obtained after 25 cycles of electrochemical deposition) below and above which the efficiency of catalyst was impaired. The heterojunction obtained thus, followed well known Z-scheme and gave appreciable increment in the photocurrent response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.