Abstract

C2H2 zinc finger proteins (ZFPs) are a class of important transcriptional regulators in eukaryotes involved in multiple biological regulation processes. Here, MaNCP1, a C2H2 ZFP, was functionally characterized in the model entomopathogenic fungus Metarhizium acridum. Deletion of MaNCP1 delayed conidial germination and hyphal growth, decreased the conidial yield and reduced the tolerances to UV-B irradiation and heat-shock. The N-terminal zinc fingers (ZFs) of MaNCP1 made the main contributions to these traits. In addition, disruption of MaNCP1 altered the conidial surface structure and decreased the conidial hydrophobicity. Bioassays showed that the virulence of the MaNCP1-disruption strain (ΔMaNCP1) was reduced in topical inoculation compared to the WT or the mutant complemented strain (CP), and the N-terminal C2H2 ZFs made a major contribution to virulence. Furthermore, the ΔMaNCP1 and C2H2 ZFs deletion mutants (MaNCP1∆N and MaNCP1∆N+C) impaired cuticular penetration. RNA-seq showed that several cuticle-degrading genes were down-regulated in the ΔMaNCP1 background, suggesting that MaNCP1 plays vital roles in regulating insect cuticle penetration. In summary, MaNCP1 affected the growth, stress tolerances and virulence of M. acridum, and the N-terminal C2H2 ZFs played indispensable roles in these important biocontrol traits. These results provide further insights into the functions of C2H2 ZFPs in entomopathogenic fungi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call