Abstract

N-terminal acylation of the alpha-subunits of heterotrimeric G-proteins is believed to play a major role in regulating the cellular localization and signaling of G-proteins, but physiological evidence has been lacking. To examine the functional significance of N-acylation of a well understood G-protein alpha-subunit, transducin (G alpha(t)), we generated transgenic mice that expressed a mutant G alpha(t) lacking N-terminal acylation sequence (G alpha(t)G2A). Rods expressing G alpha(t)G2A showed a severe defect in transducin cellular localization. In contrast to native G alpha(t), which resides in the outer segments of dark-adapted rods, G alpha(t)G2A was found predominantly in the inner compartments of the photoreceptor cells. Remarkably, transgenic rods with the outer segments containing G alpha(t)G2A at 5-6% of the G alpha(t) levels in wild-type rods showed only a sixfold reduction in sensitivity and a threefold decrease in the amplification constant. The much smaller than predicted reduction may reflect an increase in the lateral diffusion of transducin and an increased activation rate by photoexcited rhodopsin or more efficient activation of cGMP phosphodiesterase 6 by G alpha(t)G2A; alternatively, nonlinear relationships between concentration and the activation rate of transducin also potentially contribute to the mismatch between the amplification constant and quantitative expression analysis of G alpha(t)G2A rods. Furthermore, the G2A mutation reduced the GTPase activity of transducin and resulted in two to three times slower than normal recovery of flash responses of transgenic rods, indicating the role of G alpha(t) membrane tethering for its efficient inactivation by the regulator of G-protein signaling 9 GTPase-activating protein complex. Thus, N-acylation is critical for correct compartmentalization of transducin and controls the rate of its deactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.