Abstract

Light-dependent redistribution of transducin between the rod outer segments (OS) and other photoreceptor compartments including the inner segments (IS) and synaptic terminals (ST) is recognized as a critical contributing factor to light and dark adaptation. The mechanisms of light-induced transducin translocation to the IS/ST and its return to the OS during dark adaptation are not well understood. We have probed these mechanisms by examining light-dependent localizations of the transducin-alpha subunit (Gtalpha)in mice lacking the photoreceptor GAP-protein RGS9, or expressing the GTPase-deficient mutant GtalphaQ200L. An illumination threshold for the Gtalpha movement out of the OS is lower in the RGS9 knockout mice, indicating that the fast inactivation of transducin in the wild-type mice limits its translocation to the IS/ST. Transgenic GtalphaQ200L mice have significantly diminished levels of proteins involved in cGMP metabolism in rods, most notably the PDE6 catalytic subunits, and severely reduced sensitivity to light. Similarly to the native Gtalpha, the GtalphaQ200L mutant is localized to the IS/ST compartment in light-adapted transgenic mice. However, the return of GtalphaQ200L to the OS during dark adaptation is markedly slower than normal. Thus, the light-dependent translocations of transducin are controlled by the GTP-hydrolysis on Gtalpha, and apparently, do not require Gtalpha interaction with RGS9 and PDE6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.