Abstract

In the quest to raise the operating temperature and improve the detectivity of type II superlattice (T2SL) photodetectors, we introduce a design approach that we call the “N structure.” N structure aims to improve absorption by manipulating electron and hole wavefunctions that are spatially separated in T2SLs, increasing the absorption while decreasing the dark current. In order to engineer the wavefunctions, we introduce a thin AlSb layer between InAs and GaSb layers in the growth direction which also acts as a unipolar electron barrier. Unlike the symmetrical insertion of AlSb into GaSb layers, N design aims to exploit the shifting of the electron and hole wavefunctions under reverse bias. With cutoff wavelength of 4.3 μm at 77 K, temperature dependent dark current and detectivity measurements show that the dark current density is 3.6 × 10−9 A/cm2, under zero bias. Photodetector reaches background limited infrared photodetection (BLIP) condition at 125 K with the BLIP detectivity (D*BLIP) of 2.6 × 1010 Jones under 300 K background and −0.3 V bias voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.