Abstract

We report on the development of a new structure for type II superlattice photodiodes that we call the “N” design. In this new design, we insert an electron barrier between InAs and GaSb in the growth direction. The barrier pushes the electron and hole wavefunctions towards the layer edges and under bias, increases the overlap integral by about 25% leading to higher detectivity. InAs/AlSb/GaSb superlattices were studied with density functional theory. Both AlAs and InSb interfaces were taken into account by calculating the heavy hole–light hole (HH–LH) splittings. Experiments were carried out on single pixel photodiodes by measuring electrical and optical performance. With cut-off wavelength of 4.2μm at 120K, temperature dependent dark current and detectivity measurements show that the dark current is 2.5×10−9A under zero bias with corresponding R0A resistance of 1.5×104Ωcm2 for the 500×500μm2 single pixel square photodetectors. Photodetector reaches BLIP condition at 125K with the BLIP detectivity (DBLIP∗) of 2.6×1010 Jones under 300K background and −0.3V bias voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.