Abstract

This study proposes a nitrogen and sulfur co-doped carbon dot (N/S-CD)-based FRET ratiometric fluorescence aptasensing strategy modulated with entropy-driven DNA amplifier for sensitive and accurate detection of ochratoxin A (OTA). In the strategy, a duplex DNA probe containing OTA aptamer and complementary DNA (cDNA) is designed as arecognition and transformation element. Upon sensing of target OTA, the cDNA was liberated, and triggered a three-chain DNA composite-based entropy-driven DNA circuit amplification, making CuO probes anchor on amagnetic bead (MB). The CuO-encoded MB complex probe is finally turned into abundant Cu2+, which oxidizes o-phenylenediamine (oPD) to generate 2,3-diaminophenazine (DAP) with yellow fluorescence and further triggers FRET between the blue fluorescent N/S-CDs and DAP. The changes in ratiometric fluorescence are related to the OTA concentration. Originating from the synergistic amplifications from the entropy-driven DNA circuits and Cu2+ amplification, the strategy dramatically enhanced detection performance. A limit of detection as low as 0.006 pg/mL of OTA was achieved. Significantly, the aptasensor can visually evaluate the OTA via on-site visual screening. Moreover, the high-confidence quantification of the OTA in real samples with results consistent with that of the LC-MS method indicated that the proposed strategy has practical application prospects for sensitive and accurate quantification in food safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call