Abstract

DNA aptamers are single-stranded oligonucleotides that are generated by an in vitro selection method to bind targets with high affinity and specificity. Understanding molecular recognition by DNA aptamers is of fundamental importance in the development of biosensor applications. The small molecule ochratoxin A (OTA) is a fungal-derived food toxin, and OTA DNA aptamers have been established for the development of rapid detection platforms required for food safety. One such OTA aptamer (OTAA) is a guanine-rich DNA oligonucleotide that folds into an antiparallel G-quadruplex (GQ) upon OTA binding, although structural details of the GQ fold and its interaction with OTA are currently unknown. In the present study, the fluorescent nucleobase analogue, 8-thienyl-2′-deoxyguanosine (ThdG), was inserted into various G sites of OTAA to determine the probe impact on GQ folding and OTA binding affinity. Our results suggest that OTAA contains three lateral (l) loops connecting two stacked G-tetrads with an anticlockwise loop progression to afford a −(lll) GQ topology. The phenolic ring system of OTA undergoes π-stacking interactions with the G-tetrads of OTAA. Our results also demonstrate aptamer sites that can be modified with ThdG to afford a fluorescent light-up signal upon OTA binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.