Abstract

New synthetic aminooxy lipid was designed and synthesized as a building block for the formulation of functionalised nanoliposomes (presenting onto the outer surface of aminooxy groups) by microfluidic mixing. Orthogonal binding of cellular mannan (Candida glabrata (CCY 26-20-1) onto the outer surface of functionalised nanoliposomes was modified by orthogonal binding of reducing termini of mannans to oxime lipids via a click chemistry reaction based on aminooxy coupling (oxime ligation). The aminooxy lipid was proved as a suitable active component for preparation of functionalised nanoliposomes by the microfluidic mixing method performed with the instrument NanoAssemblr™. This “on-chip technology” can be easily scaled-up. The structure of mannan-liposomes was visualized by transmission and scanning electron microscopy, including immunogold staining of recombinant mannan receptor bound onto mannosylated-liposomes. The observed structures are in a good correlation with data obtained by DLS, NTA, and TPRS methods. In vitro experiments on human and mouse dendritic cells demonstrate selective internalisation of fluorochrome-labelled mannan-liposomes and their ability to stimulate DC comparable to lipopolysaccharide. We describe a potentially new drug delivery platform for mannan receptor-targeted antimicrobial drugs as well as for immunotherapeutics. Furthermore, the platform based on mannans bound orthogonally onto the surface of nanoliposomes represents a self-adjuvanted carrier for construction of liposome-based recombinant vaccines for both systemic and mucosal routes of administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.