Abstract

N,N-dimethyl-hexadecylamine (DMHDA) is released as part of volatile blends emitted by plant probiotic bacteria and affects root architecture, defense and nutrition of plants. Here, we investigated the changes in gene expression of transcription factors responsible of maintenance of the root stem cell niche and jasmonic acid signaling in Arabidopsis seedlings in response to this volatile. Concentrations of DMHDA that repress primary root growth were found to alter cell size and division augmenting cell tissue layers in the meristem and causing root widening. DMHDA triggered the division of quiescent center cells, which correlated with repression of SHORT ROOT (SHR), SCARECROW (SCR), and PLETHORA 1 (PLT1) proteins and induction of WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor. Interestingly, an activation of the expression of the jasmonic acid-related reporter genes JAZ1/TIFY10A-GFP and JAZ10pro::JAZ10-GFP suggests that the halted growth of the primary root inversely correlated with expression patterns underlying the defense reaction, which may be of adaptive importance to protect roots against biotic stress. Our data help to unravel the gene expression signatures upon sensing of a highly active bacterial volatile in Arabidopsis seedlings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call