Abstract

The classical results by J. Fell, J. Tomiyama, M. Takesaki describe n-homogeneous С*-algebras as algebras of all continuous sections for an appropriate algebraic bundle. By using this realization, several authors described the set of n-homogeneous С*-algebras with different spaces of primitive ideals. In 1974 F. Krauss and T. Lawson described the set of all n-homogeneous С*-algebras whose space Prim of primitive ideals is homeomorphic to the sphere S2. Suppose the space PrimA of primitive ideals is homeomorphic to the sphere S3 for some n-homogeneous С*-algebra A. In this case, these authors showed that the algebra A is isomorphic to the algebra C(S3,Cn×n). If n ≥ 2 then there are countably many pairwise non-isomorphic n-homogeneous С*-algebras A such that PrimA ≅ S 4. Further, let n ≥ 3. There is only one n-homogeneous С*-algebra A such that PrimA ≅ S 5. There are two non-isomorphic 2-homogeneous С*-algebras A and B with space PrimA ≅ S 5. On the other hand, algebraic bundles over the torus T 2 are described by a residue class [p] in Z/nZ = π1(PUn). Two such bundles with classes [pi] produce isomorphic С*-algebras if and only if [p1] = ±[p2]. An algebraic bundle over the torus T 3 is determined by three residue classes in Z/nZ. Anatolii Antonevich and Nahum Krupnik introduced some structures on the set of algebraic bundles over the sphere S2. Algebraic bundles over the compact connected two-dimensional oriented manifolds were considered by the author. In this case, the set of non-equivalent algebraic bundles over such space is like the set of algebraic bundles over the torus T2. Further advances could be in describing the set of algebraic bundles over the 3-dimensional manifolds.

Highlights

  • Several authors described the set of n-homogeneous С*-algebras with different spaces of primitive ideals

  • Algebraic bundles over the torus T 2 are described by a residue class [p] in Z/nZ = π1(PUn)

  • An algebraic bundle over the torus T 3 is determined by three residue classes in Z/nZ

Read more

Summary

Пусть символы e

Каждая из этих полусфер гомеоморфна кругу {z ⊂ C || z |≤ 1}. Представим каждую из этих полусфер как часть плоскости C с границей S 1 = {z ⊂ C | z z = 1}. Пусть символ обозначает дизъюнктное объединение двух множеств. То есть это измененная операция объединения множеств, которая заключается в объединении непересекающихся

Ai A
Список использованных источников
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.