Abstract
Studies have shown that protein glycosylation in cells reflects the real-time dynamics of biological processes, and the occurrence and development of many diseases are closely related to protein glycosylation. Abnormal protein glycosylation can be used as a potential diagnostic and prognostic marker of a disease, as well as a therapeutic target and a new breakthrough point for exploring pathogenesis. To address the issue of significant differences in the prediction results of previous models for different species, we constructed a hybrid deep learning model N-GlycoPred on the basis of dual-layer convolution, a paired attention mechanism and BiLSTM for accurate identification of N-glycosylation sites. By adopting one-hot encoding or the AAindex, we specifically selected the optimum combination of features and deep learning frameworks for human and mouse to refine the models. Based on six independent test datasets, our N-GlycoPred model achieved an average AUC of 0.9553, which is 0.23% higher than MusiteDeep. The comparison results indicate that our model can serve as a powerful tool for N-glycosylation site prescreening for biological researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.