Abstract
The n-electron valence state perturbation theory is reformulated in a spin-free formalism, concentrating on the “strongly contracted” and “partially contracted” variants. The new formulation is based on the introduction of average values in the unperturbed state of excitation operators which bear resemblance with analogous ones occurring in the extended Koopmans’ theorem and in the equations-of-motion technique. Such auxiliary quantities, which allow the second-order perturbation contribution to the energy to be evaluated very efficiently, can be calculated at the outset provided the unperturbed four-particle spinless density matrix in the active orbital space is available. A noticeable inequality concerning second-order energy contributions of the same type between the strongly and partially contracted versions is proven to hold. An example concerning the successful calculation of the potential energy curve for the Cr2 molecule is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.