Abstract
N-doped carbon fibers (NCFs) were in situ prepared by Camellia sinensis branches waste through hydrothermal carbonization with urea/ZnCl2 at 160-280 °C under 0.8-8.9 MPa. The structural characteristics of NCFs were investigated by elemental analysis, SEM, TEM, XRD, XPS, Raman spectra, and BET surface area. The highest N content of NCFs obtained at 280 °C was 8.96%, and the main forms of doped N were pyridinic N, pyrrolic N, and graphitic N. Moreover, NCFs were applied to remove metal ions successfully. The results showed that NCF-240 had the maximum adsorption amounts of 106.52, 125.23, and 153.49 mg/g for Cu2+, Pb2+, and Zn2+, respectively, while NCF-280 had the best removal ability on Cr6+ (145.67 mg/g). Finally, it demonstrated that the adsorption behavior of NCFs was well fitted by the pseudo-second-order kinetic and the Langmuir adsorption isotherm models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.