Abstract
Fe-, and N-co-doped carbon (FeNC) electrocatalysts are promising alternatives to Pt-based catalysts for oxygen reduction reaction (ORR); however, simultaneously enhancing their intrinsic activity and exposure of Fe active sites remains challenging. Herein, we report S-modified Fe single-atom catalysts (SACs) anchored on N,S-co-doped hollow porous nanocarbon (Fe/NS-C) for ORR. The unique hollow structure and large surface area of the SACs are favorable for mass/electron transport and exposure of Fe single-atom active sites. The as-prepared Fe/NS-C electrocatalysts display a high-efficiency ORR activity with a half-wave potential of 0.893 V versus the reversible hydrogen electrode and exceed that of the benchmark commercial Pt/C catalyst as well as most reported transition-metal based SACs. Impressively, the Fe/NS-C-based Al-air battery (AAB) displays a high open circuit voltage of 1.48 V, a maximum power density of 140.16 mW cm−2, and satisfactory durability, outperforming commercial Pt/C-based AAB. Furthermore, Fe/NS-C exhibits considerable potential as a cathode catalyst for application in direct methanol fuel cells. Experimental and theoretical calculation results reveal that the excellent ORR performance of Fe/NS-C can be contributed to the highly active FeN3S sites and the unique hollow structure. This work provides new insights into the rational design and synthesis high-performance ORR electrocatalysts for energy conversion and storage devices. of employing ZIF-8 as precursors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.