Abstract

In this study, we investigated the role of reduced glutathione (GSH) and nuclear factor-kappaB (NFkappaB) in hypoxia-induced apoptosis. Hypoxia caused p53-dependent apoptosis in murine embryonic fibroblasts transfected with Ras and E1A. N-Acetyl-l-cysteine (NAC) but not other antioxidants, such as the vitamin E analog trolox and epigallocatechin-3-gallate, enhanced hypoxia-induced caspase-3 activation and apoptosis. NAC also enhanced hypoxia-induced apoptosis in two human cancer cell lines, MIA PaCa-2 pancreatic cancer cells and A549 lung carcinoma cells. In murine embryonic fibroblasts, all three antioxidants blocked hypoxia-induced reactive oxygen species formation. NAC did not enhance hypoxia-induced cytochrome c release but did enhance poly-(ADP ribose) polymerase cleavage, indicating that NAC acted at a post-mitochondrial level. NAC-mediated enhancement of apoptosis was mimicked by incubating cells with GSH monoester, which increased intracellular GSH similarly to NAC. Hypoxia promoted degradation of an inhibitor of kappaB(IkappaBalpha), NFkappaB-p65 translocation into the nucleus, NFkappaB binding to DNA, and subsequent transactivation of NFkappaB, which increased X chromosome-linked inhibitor of apoptosis protein levels. NAC failed to block degradation by IkappaBalpha and sequestration of the p65 subunit of NFkappaB to the nucleus. However, NAC did abrogate hypoxia-induced NFkappaB binding to DNA, NFkappaB-dependent gene expression, and induction of X chromosome-linked inhibitor of apoptosis protein. In conclusion, NAC enhanced hypoxic apoptosis by a mechanism apparently involving GSH-dependent suppression of NFkappaB transactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.