Abstract
In the civil engineering construction field, it is often necessary to determine the ventilation requirements in order to maintain a minimum air quality for human breathing. This needs to take into account dilution of natural gushed gas and the exhaust gases from diesel equipment, the gases produced by the detonation of explosives and their dissipation time, as well as the dust generated by shotcreting. The purpose of such a ventilation plan is to specify the capacity and optimum location of the ventilation equipment, both of which are calculated simply.Recent large-scale underground excavations such as power plant, energy storage, and so on, consist of complex lay-outs, deeply seated long openings, and substantial excavation volumes. Hence, they require rather sophisticated ventilation programs because of their huge pressure losses and air handling volumes.The authors have applied coalmine ventilation technology to optimize the ventilation plan for such large-scale underground civil constructions. A quasi-three-dimensional ventilation network analysis method has been developed and applied to analyze the airflow in large scale geo-spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.