Abstract

本文将C(石墨)和SiO2制成扩散偶,在高温下研究了SiO2的还原机理。结果表明,C(石墨)和SiO2的界面反应主要为SiO2 + C(graphite ) = Si + CO,C的气化反应的存在抑制了C(石墨)和SiO2之间的其他反应的发生。Si层厚与时间的反应关系表明,在最初的2 h过程中,线性生长机理占优势,其斜率接近于1,反应为界面反应控制;但是,当生长相厚度超过一个临界值时,生成层以抛物线机理生长,斜率接近于0.5,反应为扩散控制。 In this paper, the Carbothermal reduction mechanism of SiO2 at high temperature is studied under diffusion couple of C(graphite) and SiO2. It was found that the solid reaction of SiO2 + C(graphite) = Si + CO is the main reduction process. The gasification reaction of C suppresses other reaction between SiO2 and C(graphite). The relation between Si layer thickness and time shows that the linear growth mechanism is dominant in the initial 2 h process, the slope is close to 1, and the reaction is con-trolled by the interfacial reaction; However, when the appearance thickness exceeds a critical value, the growth layer grows in a parabolic mechanism, slope is close to 0.5, and the reaction is controlled by the C diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call