Abstract

There is considerable interest in joining of aluminum to iron because of various advantages such as weight reduction of vehicles. However, the intermetallic compound (IMC) formed at the welded interfaces causes a brittle fracture of the dissimilar joint. Therefore, it is important to prevent the formation of IMC. It is well-known that friction stir welding (FSW) is suitable for the inhibition of IMC formation due to the low heat input. This study investigated the formation mechanism of IMC during FSW by comparing the results from previous studies, in which dissimilar welds were prepared by the diffusion bonding and roll bonding. The time compensated IMC thickness in FSW was larger than that in the other joining methods. This is because three factors of fresh surface, stored strain and plastic flow were strongly affected the formation mechanism of IMC. However, the amount of IMC was significantly small because the welding time was very short. It is therefore considered that a dissimilar joint of aluminum to iron can be achieved by FSW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.