Abstract

Microstructures and mechanical properties of dissimilar welding joint between Al alloy and Mg alloy by Friction Stir Welding (FSW) were investigated in comparison with laser welding of the same combination. Dissimilar joint of Al and Mg alloy by laser welding was very brittle because of building up Mg 17 Al 12 inter metallic compounds in fusion zone. On the other hand, FSW is anticipated to welding dissimilar alloys with enough joint strength because it is a solid-state process without melting. In this paper, FSW was carried out to make dissimilar butt joints of Al alloy and AZ31 magnesium alloy with various tool rotational speed and welding speed. These joints showed higher hardness in their stir zones than that of parent AZ31 alloy because of Mg-Al inter metallic compound formation. However, the hardness of stir zone was lower than that of fusion zone of laser welding, and was changed with the welding parameters of tool rotational speed and welding speed (i.e. heat input ratio of FSW). The optimum welding conditions of Mg and Al dissimilar FSW joint and the influence of inter metallic compound distribution with mixing of materials in stir zone were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.