Abstract

The steady state of dipolar magnetic field expansion is examined by injecting a plasma jet from the center of the dipolar magnetic field (magnetic inflation). An effective magnetic inflation is essential for the realization of a magneto plasma sail (MPS), which produces a propulsive force by the interaction between the solar wind and an artificial dipolar magnetic field that is inflated by the plasma jet injected from the spacecraft. During the process of magnetic inflation, the finite Larmor radius effect is of practical significance since rL/LB is considerably greater than unity in a region far from the center of the dipolar magnetic field. The simulation result obtained using the ideal magnetohydrodynamics (MHD) model is overestimated, namely, it shows that the inflated magnetic field decays according to |B| ∝ r -2.0 since the magnetic field is frozen into the plasma jet. In comparison with the MHD result, the results obtained using the hybrid particle-in-cell code are more accurate. These results show that the inflated magnetic field decays according to |B| ∝ r -2.3 under the condition βin = 1 since the finite ion Larmor radius effect decreases the flow of magnetic flux with respect to the flow of plasma jet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call