Abstract

The steady state of dipolar magnetic field expansion is examined by injecting a plasma jet from the center of the dipolar magnetic field (magnetic inflation). Using a two-dimensional hybrid particle-in-cell (PIC) code taking into account the finite Larmor radius effect, we examine the magnetic field inflation process when Argon (Ar) plasma is injected into a dipole magnetic field generated by a simple hoop coil; the plasma is injected within an angle of 30° in the polar direction. Compared to ideal magneto hydrodynamics (MHD) results, the results obtained using the hybrid PIC code are more accurate since the finite ion Larmor radius effect decreases the flow of magnetic flux with respect to the flow of the plasma jet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.