Abstract
Lycium barbarum L. (L. barbarum) is an economic crop with high added value and profit. Vibration harvesting is a suitable mechanized harvesting method for L. barbarum. It bruises easily during harvesting due to the softness and vulnerability of fresh ripe fruit, resulting in economic losses. This study analyzed the fruit drop and collision during vibration harvesting. High-speed photography was used to obtain the impact speed and angle of the falling fruit, and a kinematic analysis of the collision with the collection surface was conducted. The majority of the fruit had an impact speed of 2-6 m/s and an impact angle of 30-90° with the collection surface. A drop test was conducted to assess fruit bruising, and the impact speed was converted to the drop height. A orthogonal rotation experiment was conducted, and mathematical model was established between the drop height, impact angle, and impact material, and the fruit bruise rate, maximum impact force, recovery coefficient, and impact time. The effects of the factors on the fruit bruise rate, maximum impact force, recovery coefficient, and impact time were analyzed. The test results show that a vibration harvesting device for L. barbarum should be designed to reduce the height between the fruit and the collection surface and utilize a tilted collection surface and high cushioning materials to reduce the fruit bruising. This study provides guidance for subsequent research on the bruising of L. barbarum during vibration harvesting and harvester design.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have