Abstract

We recently proposed a new design for a high-temperature superconducting thin-film fault-current limiter (FCL), which uses high-resistivity Au-Ag alloy shunt layers instead of the pure gold (or silver) shunt layers conventionally used. Due to the much larger resistance of the Au-Ag alloy layers, the FCL elements withstood very high electric fields (> 40 Vpeak/cm), and realized a very high switching power density, ∼2.0 kVA/cm2. The composition of our FCL element is very simple, and the achieved power density is more than five times higher than conventional devices, which leads to a dramatic reduction in the amount of expensive superconducting thin films required. Similarly, Kinder et al. recently proposed a new coated-conductor-based FCL element, which achieved a relatively high electric field of 2.7 Vpeak/cm. We estimated the cost of our thin-film FCL elements used in a typical 6.6 kV FCL that is introduced in a distributed power supply site. We also estimated the cost of coated conductors used to produce the FCL, and compared the two.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.