Abstract
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N−3 polyunsaturated fatty acids (n−3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n−3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500μM of PAL without or with 50μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n−3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n−3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.